If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2-16u+9=0
a = 4; b = -16; c = +9;
Δ = b2-4ac
Δ = -162-4·4·9
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{7}}{2*4}=\frac{16-4\sqrt{7}}{8} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{7}}{2*4}=\frac{16+4\sqrt{7}}{8} $
| x1+5x=79 | | 7a+9=7 | | (3x+1)=53 | | 4x+5x-160=0 | | 4x+5x-176=0 | | 4x+5x-800=0 | | -6(9x+5)+-3x+4x=-408+x | | 4x+5x-880=0 | | -6(-9+5)-3x+4x=-408+x | | 2x-1=11x+1 | | 52x−1=125 | | 4x-4(4x+9)=0 | | x=10^3-325 | | v/7+10.1=-7.4 | | (−3x/x−1)=(−1/x^2+x−2)−(4x/x+2) | | 43/13=13x/13 | | x^2-2x=-5x | | x/(0.25-x)(0.25-x)=0.19 | | 12c-12=0 | | (4K+5)=(6k+10)=115 | | x−15=22 | | 10-2x=15+3x | | 10-2x=15+3 | | 6x-9x+9=x-8+17 | | y+2(y+500)=1210 | | 3(2x+3)-2(x-5)=1 | | 2(3t-6)=17T+8 | | 6-5x=-2(3x-4) | | 6x+9-4x+20=1 | | -2(x-4)=3x-7 | | X+x+5581=210355 | | (2x+10)+(2x)=90 |